Multisampling Compressive Video Spectroscopy

نویسندگان

  • Daniel S. Jeon
  • Inchang Choi
  • Min H. Kim
چکیده

The coded aperture snapshot spectral imaging (CASSI) architecture has been employed widely for capturing hyperspectral video. Despite allowing concurrent capture of hyperspectral video, spatial modulation in CASSI sacrifices image resolution significantly while reconstructing spectral projection via sparse sampling. Several multiview alternatives have been proposed to handle this low spatial resolution problem and improve measurement accuracy, for instance, by adding a translation stage for the coded aperture or changing the static coded aperture with a digital micromirror device for dynamic modulation. Stateof-the-art solutions enhance spatial resolution significantly but are incapable of capturing video using CASSI. In this paper, we present a novel compressive coded aperture imaging design that increases spatial resolution while capturing 4D hyperspectral video of dynamic scenes. We revise the traditional CASSI design to allow for multiple sampling of the randomness of spatial modulation in a single frame. We demonstrate that our compressive video spectroscopy approach yields enhanced spatial resolution and consistent measurements, compared with the traditional CASSI design.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arbitrary Resolution Video Coding Using Compressive Sensing

An arbitrary resolution video coding method based on compressive sampling is proposed. In this method, a video is coded using compressive measurements. The compressive measurements are made on videos of high resolution. The measurements may be used to reconstruct the video at the same resolution as the original video, and any subset of the measurements can be used to reconstruct video at lower ...

متن کامل

Simultaneous Compression and Encryption of Video Sequences Based on 3D Compressive Sensing and 3D Discrete Fractional Random Transform

In this paper, we propose a novel video sequences compression and encryption method combining 3D compressive sensing (3D-CS) with 3D discrete fractional random transform (3D-DFrRT). In this scheme, the original video sequences were transformed with discrete wavelet and measured by three Gaussion random matrices to achieve compression and encryption simultaneously, and then the resulting 3D imag...

متن کامل

Compressive STEM-EELS

The collection of electron energy loss spectra (EELS) via scanning transmission electron microscopy (STEM) generally requires a specimen to withstand a large radiation dose. Moreover, significant drift can occur while the spectra are collected. Recent advances in electron microscopy have shown that a data reduction of up to 90% is possible for HAADF/ABF imaging and TEM video [1, 2, 3]. These ad...

متن کامل

Tree-Structure Bayesian Compressive Sensing for Video

A Bayesian compressive sensing framework is developed for video reconstruction based on the color coded aperture compressive temporal imaging (CACTI) system. By exploiting the three dimension (3D) tree structure of the wavelet and Discrete Cosine Transformation (DCT) coefficients, a Bayesian compressive sensing inversion algorithm is derived to reconstruct (up to 22) color video frames from a s...

متن کامل

Detecting compressive strain by evaluation of Raman spectroscopy of the multiwall Carbon nanotubes/TiO2 nanocomposites

Functionalized Multi-walled carbon nanotubes (f-MWCNTs) which are modified using nitric acid and sulfuric acid were evaluated to synthesize a uniform nanocomposite via application of TiO2. The f-MWCNTs-TiO2 nanocomposites have been produced via using the chemical simple two-step method. To characterize the structural analysis, scanning electron microscopy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comput. Graph. Forum

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2016